## Charge Controller

## C CS 9410

Datasheet

## Applications for the CCS-System:

Alarm Systems, Cellular Phones, Computer, Electric Vehicles, HiFi, Hobby, Instruments, Lamps, Medical Electronics, Pager, Portables, Radio, Solar Systems, Telephone, Tools, Toys, UPS, Video..

## Special Features

© Singlechip for a threefold (3 in 1) battery charger
© Serial, automatic charge of 3 battery packs
© Minimized hardware
© Option: PC-Interface

## Features:

© Microcomputer controlled quickcharge up to $100 \%$ exactly in 20-30 minutes
© CCS charge termination
© No overcharge, no memory effect
© Extended battery life, >5000 cycles

- Independent of battery type: NiCd, NiMH, etc.
© Number of cells unlimited
- Automatic recharge, MC controlled
© Independent of precharging state, no discharge needed
- Reliable function also with protection diodes in the battery pack
(-) Simple handling, fail-safe by watchdog control
-) Independent of external influences (e.g. temperature)
- Improved start up characteristic on empty cells
© Battery fault detection (LED signal)


## Characteristics:

Input voltage:
Low power:
Package:
3.0 V to 5.5 V
$<2 \mathrm{~mA}$
PDIP 18, SOIC 18,
SSOP 20

Operating temperature:
Commercial:
Industrial:
0 to $+70^{\circ} \mathrm{C}$

Storage temperature: -65 to $+150^{\circ} \mathrm{C}$

## Pin Configuration:

| 1 | LED 3 | 10 | WD 2 |
| :--- | :--- | :--- | :--- |
| 2 | TxD | 11 | WD 3 |
| 3 | F.U. | 12 | INTOUT, Integrator |
| 4 | RST | 13 | INTIN, Integrator |
| 5 | GND | 14 | V $_{\text {DD }}$ |
| 6 | ADE 1 | 15 | CLKOUT |
| 7 | ADE 2 | 16 | OSC |
| 8 | ADE 3 | 17 | LED 1 |
| 9 | WD 1 | 18 | LED 2 |

Block Diagram:


| Absolute Maximum Ratings: | min. | max. | units |
| :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | 0 | 5.5 | V |
| Operating current $\mathrm{I}_{\mathrm{DD}}$ | - | 50 | mA |
| $\mathrm{I} / \mathrm{O}$ pins | -0.6 | $\mathrm{~V}_{\mathrm{DD}}+0.6$ | V |
| INPUT-port pin-No. $4,6,7,8,13,16$ | - | $+/-500$ | $\mu \mathrm{~A}$ |
| OUTPUT-port pin-No. $1,2,9,10,11,12,13,17,18$ | - | $+/-20$ | mA |
| Total power dissipation | - | 800 | mW |


| Supply: at $25^{\circ} \mathrm{C}$ | min. | typ. | max. | units |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | 3.0 | 5.0 | 5.5 | V |
| Standby current (OUT1/2 n.c.) | - | 1.8 | 3.3 | mA |
| Characteristics: at $25^{\circ} \mathrm{C}$ | min. | typ. | max. | units |
| Input low-value | $\mathrm{V}_{\mathrm{SS}}$ | - | $0.2 \mathrm{~V}_{\mathrm{DD}}$ | V |
| Input high-value | $0.2 \mathrm{~V}_{\mathrm{DD}}+1$ | - | $\mathrm{V}_{\mathrm{DD}}$ | V |
| Input leakage current | -1 | 0.5 | +1 | $\mu \mathrm{~A}$ |
| Output low-value $\left(\mathrm{I}_{\mathrm{OL}}=8.7 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}\right)$ | - | - | 0.6 | V |
| Output high-value $\left(\mathrm{I}_{\mathrm{OH}}=-5.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}\right)$ | $\mathrm{V}_{\mathrm{DD}}-0.7$ | - | - | V |
| RESET low-timing $($ pulse width $)$ | 100 | - | - | ns |
| RC-oscillator $(3 \mathrm{k} 6$ @330pF or $10 \mathrm{k} @ 120 \mathrm{pF})$ | 530 | 625 | 737 | kHz |

## Functional Description

The CCS controller with appropriate circuitry controls the charging of a rechargeable battery up to $100 \%$ of the available capacity. The inner impedance between electrode and electrolyte is used for the determination of the $100 \%$ full charge state (patented worldwide). In addition the CCS controller features a battery fault detection and an intelligent recharging procedure for maintaining charge in standby operation without derating the performance of the battery by memory effect. Automatic on/off switching of the charging current is controlled by a fail-safe Watch Dog Circuit (WDC).

## Power Source:

For the calculation of the inner impedance (according to the new process) it is essential, that the power is supplied with the sinusoidal $100 / 120 \mathrm{~Hz}$ pulsation of the rectified line current.
Although the battery is charged correctly in many cases, the use of a DC current may not prevent in every condition from uncertain calculations which may lead to premature shut off, overloading, excessive heating and damage of the battery and surrounding material. Therefore the use of a smoothing capacitor as well as the operation from a DC supply (battery) is strictly forbidden.

## Battery Voltage:

In principle the controller is independent of cell voltage and number of cells. In every case the battery voltage is reduced by a voltage divider to normalized 1.26 V at battery nominal voltage.

## Charge Current:

To ensure best results it is necessary that the parameters remain inside their computational limits. Therefore the mean charging current should be stabilized around $1 \mathrm{C}_{\mathrm{A}}(0,5-2)$.

## Process Timing:

The moment, the power supply is switched on $(\mathrm{t} 0)$, the controller is in standby operation. When a battery connection is detected ( t 1 ) in one of the 3 battery shafts, the CCS9410 starts the measurement of the inner impedance and switches on a pulsating charging current. When the measurement of the inner impedance of the battery points to a $100 \%$ full charge, the controller switches off the charging current ( $\mathrm{t} 4^{\prime}$ ).

## Battery Fault Detection:

a) Over voltage (open circuit): If the battery voltage exceeds the upper „limit S2", the charging process stops immediately and the controller signals „Battery disconnected".
S2: e.g. for $\mathrm{NiCd} \quad \mathrm{V}_{\text {nom }}=1,2 \mathrm{~V} \quad 166 \%$ of $\mathrm{V}_{\text {nom }}=1,99 \mathrm{~V} /$ cell
b) Under voltage (shorted cell): If, at moment $\mathrm{t4}$ ', which is 30 sec after charge termination t 3 , the battery voltage is below a defined lower „limit S1", the charging cycle will be restarted for a maximum of two times. If the voltage is still out of that range, the controller signals "Battery defective" (LED flashing). If the battery is not disconnected, recharge will follow in every case. S1: e.g. for $\mathrm{NiCd} \quad \mathrm{V}_{\text {nom. }}=1,2 \mathrm{~V} \quad 119 \%$ of $\mathrm{V}_{\text {nom }}=1,42 \mathrm{~V} /$ cell

For the second battery and all the next batteries, the above mentioned procedure will be repeated.

## Recharge:

The recharge for the first battery starts at moment t 7 . The shut off is detected by measurement of the inner impedance of the battery as mentioned before

## Charge Order:

Order for battery connection: optional!
At any time and in any battery shaft it is possible to connect a battery or to replace a fully charged or defective battery with another battery.

Order for battery charging: battery A1, battery A2, battery A3
If more than 1 batteries are put into the charging station at the same time, the battery, that is put in first, will be charged first. All other batteries will be charged serially (A1, A2, A3, A1, etc.). Recharge, if necessary, will always follow the order A1, A2, A3.
In any case every battery will be charged only one time (charge and recharge). If a battery shaft is empty or a battery is already charged+recharged, the CCS9410 turns over to the next battery shaft. If all batteries are fully charged, the charging station stays in standby position. The moment when a battery is replaced, a new charging process starts and all batteries will be recharged.

Status:

| LED on | Battery charging |
| :--- | :--- |
| LED flashing slowly | Battery waiting for charge |
| LED flashing fast | Battery defective |
| LED off | Battery fully charged, or no connection |

Pin Description

| Pin 5 | GND | Ground |
| :---: | :---: | :---: |
| Pin 14 | $\mathrm{V}_{\mathrm{DD}}$ | Positive input voltage |
| Pin 4 | RST | $\begin{aligned} & \text { GND = RESET } / \mathrm{V}_{\mathrm{DD}}(\text { Pull-up })=\text { program start } \\ & \text { rising edge to } \mathrm{V}_{\mathrm{DD}} \text { RESET-TIME }=18 \mathrm{msec} \end{aligned}$ |
| Pin 16 | OSC | R/C oscillator input |
| Pin 15 | CLKOUT | Oscillator output ( $1 / 4 \mathrm{f}_{\text {OSC }}$ ) |
| Pin 12 | INTOUT | Integrator output: pulse, period T $=52 \mathrm{msec} \pm 18 \%$ <br> Duty cycle ( $\mathrm{H} / \mathrm{T}$ ) < $23 \%$...battery connected <br> Duty cycle (H/T) approx. $14 \%$ to $23 \%$... measurement, battery full <br> Duty cycle (H/T) < 14\%...battery fault, limit S1 <br> Duty cycle (H/T) over 23\%...battery fault, limit S2, no battery |
| Pin 13 | INTIN | Integrator input |
| Pin 2 | TxD | Datatransfer output, BTI-Adapter to PC |
| Pin 9 <br> Pin 10 <br> Pin 11 | WD 1-3 | Control output for charging current (off $=0 \mathrm{~V}$, on $=5 \mathrm{~V}$ approx. 10 kHz ) <br> Output LOW: no battery or battery waiting for charge Pulse signal: battery charging |
| Pin 6 <br> Pin 7 <br> Pin 8 | ADE 1-3 | Control input for battery detection Input HIGH: no battery connected Input LOW: battery connected |
| $\begin{aligned} & \hline \text { Pin } 1 \\ & \text { Pin } 17 \\ & \text { Pin } 18 \end{aligned}$ | LED 1-3 | Status indicator (level 0V-5V) <br> Battery connected: output HIGH <br> Charging cycle: output stays HIGH <br> Battery full: output LOW <br> Battery waiting: 1 Hz pulses <br> Battery fault: 2 Hz pulses until next recharge |

[^0]
## Charge Diagram:



## Process-Timing

| t0-t1 | Standby | Until battery is connected. |
| :---: | :---: | :---: |
| t1 |  | First battery A1 connected |
| t2 |  | Second battery A3 connected |
| t3 |  | Third battery A2 connected |
| t1-44 | Charging | A1 until $100 \%$ fullcharge of the battery <br> Time depends on precharging state and charging current <br> From 1 min . to approx. 60 min . at $1 \mathrm{C}(120 \mathrm{~min}$. at $0,5 \mathrm{C} ; 30 \mathrm{~min}$. at 2C) |
| t4-t5' | Charging | A2 until $100 \%$ fullcharge of the battery See above |
| t5-t6' | Charging | A3 until $100 \%$ fullcharge of the battery See above |
| t6-t7 | Standby | Until next recharge Approx. 1 hour (MC-controlled) |
| t7-18' | Charging | Recharge A1 (similar to t1-t4') |
| t8-t9' | Charging | Recharge A2 (similar to t4-t5') |
| t9-t10 | Charging | Recharge A3 (similar to t5-t6') |
| tx'-tx | Delay | Approx. 5 min (no reaction when battery connected/disconnected) |

## Block Diagram:

for typical application


## Application:

The circuit must be supplied with a full bridge rectifier - no smoothing capacitor!

## Supply Voltage Vin:

As supply voltage $\mathrm{V}_{\text {in }}$ use a rectified $50 / 60 \mathrm{~Hz}$ AC voltage pulsating with a $100 / 120 \mathrm{~Hz}$ frequency.

## R9 Number of cells:

$$
\begin{aligned}
& \mathrm{R} 9=\mathrm{R} 10 \times\left[\left(\mathrm{V}_{\text {Battery }} / 1.2\right)-1\right] \\
& \mathrm{V}_{\text {Battery }}=1.2 \times[1+(\mathrm{R} 9 / \mathrm{R} 10)]
\end{aligned}
$$

Exception: $\mathrm{V}_{\text {Battery }}=1.2(\mathrm{R} 9=1 \mathrm{~K})$
R9 @ R10 = 33K

| Battery nominal-voltage | 1.2 | 2.4 | 3.6 | 4.8 | 6.0 | 7.2 | 8.4 | 9.6 | 10.8 | 12.0 | $\mathrm{~V}=$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of cells | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| Resistor R9 | 1 | 34 | 67 | 100 | 133 | 166 | 199 | 232 | 265 | 298 | KOhm |
| $\mathrm{V}_{\text {in }}$ typ. | 9 | 9 | 9 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | $\mathrm{~V}_{\text {eff }}$ |

## Charge Current:

The charge current must be stabilized around $1 \mathrm{C}_{\mathrm{A}}$.
$\mathrm{I}_{\text {charge }}=\mathrm{U}_{\text {ref }} /$ (Resistor R38 parallel to R 39 parallel to R40) with $\mathrm{U}_{\text {Ref }}=0,3 \mathrm{~V}_{\text {eff }}$
Limits: min. $1 / 2 \mathrm{C}_{\mathrm{A}}$ (20-30 minutes charge) to max. $2 \mathrm{C}_{\mathrm{A}}$. (2 hours charge)

## Operating Instructions:

1) Power supply on: green LED on (standby).
2) Battery charging: red LED on. (not protected against false polarity!)
3) Battery fully charged: red LED off.
4) Battery fault: red LED flashing fast
5) Battery waiting: red LED flashing slowly.
6) Battery change during charge possible


## Package:

18 - Lead Plastic Dual In-line DIP 18


18-Lead Plastic Surface Mount
SOIC -W ide SMD

20 - Lead Plastic Surface Mount SSOP


Sales office:
Producer:
$\equiv \mathrm{BTI} \equiv$ Rudolfstrasse 14
A-8010 Graz, AUSTRIA
Tel: $(++43 / 316) 326031$
Fax: (++43/316) 381808
email: info@bticcs.com
http://www.bticcs.com
BTI does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and BTI reserves the right, at any time without notice, to change said circuitry or specifications.


[^0]:    Pin 16: For a new design use $\mathrm{R6}=3 \mathrm{k} 6$ and $\mathrm{C} 6=330 \mathrm{pF}$, oscillator is more stable! Do not connect F.U. Pins!!

